(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(x, a(b(y))) →+ f(c(d(x)), y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y / a(b(y))].
The result substitution is [x / c(d(x))].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))

Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f

(8) Obligation:

TRS:
Rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))

Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a

Generator Equations:
gen_d:c4_0(0) ⇔ hole_d:c2_0
gen_d:c4_0(+(x, 1)) ⇔ c(gen_d:c4_0(x))
gen_b:a5_0(0) ⇔ hole_b:a3_0
gen_b:a5_0(+(x, 1)) ⇔ a(gen_b:a5_0(x))

The following defined symbols remain to be analysed:
f

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)

Induction Base:
f(gen_d:c4_0(+(1, 0)), gen_b:a5_0(b))

Induction Step:
f(gen_d:c4_0(+(1, +(n7_0, 1))), gen_b:a5_0(b)) →RΩ(1)
f(gen_d:c4_0(+(1, n7_0)), a(gen_b:a5_0(b))) →IH
*6_0

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))

Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a

Lemmas:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)

Generator Equations:
gen_d:c4_0(0) ⇔ hole_d:c2_0
gen_d:c4_0(+(x, 1)) ⇔ c(gen_d:c4_0(x))
gen_b:a5_0(0) ⇔ hole_b:a3_0
gen_b:a5_0(+(x, 1)) ⇔ a(gen_b:a5_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
f(x, a(b(y))) → f(c(d(x)), y)
f(c(x), y) → f(x, a(y))
f(d(x), y) → f(x, b(y))

Types:
f :: d:c → b:a → f
a :: b:a → b:a
b :: b:a → b:a
c :: d:c → d:c
d :: d:c → d:c
hole_f1_0 :: f
hole_d:c2_0 :: d:c
hole_b:a3_0 :: b:a
gen_d:c4_0 :: Nat → d:c
gen_b:a5_0 :: Nat → b:a

Lemmas:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)

Generator Equations:
gen_d:c4_0(0) ⇔ hole_d:c2_0
gen_d:c4_0(+(x, 1)) ⇔ c(gen_d:c4_0(x))
gen_b:a5_0(0) ⇔ hole_b:a3_0
gen_b:a5_0(+(x, 1)) ⇔ a(gen_b:a5_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_d:c4_0(+(1, n7_0)), gen_b:a5_0(b)) → *6_0, rt ∈ Ω(n70)

(16) BOUNDS(n^1, INF)